Coupling LaNiO3 Nanorods with FeOOH Nanosheets for Oxygen Evolution Reaction
نویسندگان
چکیده
Perovskite-based electrocatalysts with compositional flexibility and tunable electronic structures have emerged as one of the promising non-noble metal candidates for oxygen evolution reaction (OER). Here, we propose a heterostructure comprising perovskite oxide (LaNiO3) nanorods iron hydroxide (FeOOH) nanosheets an effective electrochemical catalyst OER. The optimized 0.25Fe-LNO interesting 1D-2D hierarchical structure shows low overpotential 284 mV at 10 mA cm?2 small Tafel slope 69 dec?1. enhanced performance can be explained by synergistic effect between LaNiO3 FeOOH, resulting in improved electrochemically active surface area, facilitated charge transfer adsorption OH intermediates.
منابع مشابه
Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting.
Reaching the goal of economical photoelectrochemical (PEC) water splitting will likely require the combination of efficient solar absorbers with high activity electrocatalysts for the hydrogen and oxygen evolution reactions (HER and OER). Toward this goal, we synthesized an amorphous FeOOH (a-FeOOH) phase that has not previously been studied as an OER catalyst. The a-FeOOH films show activity c...
متن کاملPlasma-Engraved Co3 O4 Nanosheets with Oxygen Vacancies and High Surface Area for the Oxygen Evolution Reaction.
Co3 O4 , which is of mixed valences Co(2+) and Co(3+) , has been extensively investigated as an efficient electrocatalyst for the oxygen evolution reaction (OER). The proper control of Co(2+) /Co(3+) ratio in Co3 O4 could lead to modifications on its electronic and thus catalytic properties. Herein, we designed an efficient Co3 O4 -based OER electrocatalyst by a plasma-engraving strategy, which...
متن کاملMOF-Derived Ultrathin Cobalt Phosphide Nanosheets as Efficient Bifunctional Hydrogen Evolution Reaction and Oxygen Evolution Reaction Electrocatalysts
The development of a highly efficient and stable bifunctional electrocatalyst for water splitting is still a challenging issue in obtaining clean and sustainable chemical fuels. Herein, a novel bifunctional catalyst consisting of 2D transition-metal phosphide nanosheets with abundant reactive sites templated by Co-centered metal-organic framework nanosheets, denoted as CoP-NS/C, has been develo...
متن کاملNickel Oxide/Carbon Nanotubes as Active Hybrid Material for Oxygen Evolution Reaction
Carbon nanotubes are of great interest due to their high surface area and rich edge sites, which are favorable for wide applications. Here, a simple and efficient routine is presented by decoration of multi-wall carbon nanotube (MWCNT) with nickel oxide (NiO) nanoparticles.The morphologies of NiO-MWCNT were investigated by using scanning electron microscope (SEM) and energydispersive X-...
متن کاملConducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction.
We report chemically exfoliated MoS2 nanosheets with a very high concentration of metallic 1T phase using a solvent free intercalation method. After removing the excess of negative charges from the surface of the nanosheets, highly conducting 1T phase MoS2 nanosheets exhibit excellent catalytic activity toward the evolution of hydrogen with a notably low Tafel slope of 40 mV/dec. By partially o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Catalysts
سال: 2022
ISSN: ['2073-4344']
DOI: https://doi.org/10.3390/catal12060594